Convergence of a Navier-stokes-poisson Approximation of the Incompressible Navier-stokes Equations

نویسندگان

  • Jianwei Yang
  • Shu Wang
چکیده

This paper studies the quasi-neutral limit of pressureless Navier-Stokes-Poisson equations in plasma physics in the torus T. For well prepared initial data the convergence of solutions of compressible Navier-Stokes-Poisson equations to the solutions of incompressible Navier-Stokes equations is justified rigorously by using the curl-div decomposition of the gradient. And a priori estimates with respect to λ is also established uniformly. 2000 MSC: 35B40, 35C20, 35L60, 35Q35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a Singular Euler-poisson Approximation of the Incompressible Navier-stokes Equations

In this note, we rigorously justify a singular approximation of the incompressible Navier-Stokes equations. Our approximation combines two classical approximations of the incompressible Euler equations: a standard relaxation approximation, but with a diffusive scaling, and the Euler-Poisson equations in the quasineutral regime.

متن کامل

The Quasineutral Limit of Compressible Navier-stokes-poisson System with Heat Conductivity and General Initial Data

The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general (ill-prepared) initial data is rigorously proved in this paper. It is proved that, as the Debye length tends to zero, the solution of the compressible Navier-Stokes-Poisson system converges strongly to the strong solution of the incompressible Navier-Stokes equations plus a term of fast singul...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations

Projection methods are an efficient tool to approximate strong solutions of the incompressible Navier-Stokes equations; as a major deficiency, these methods often suffer from reduced accuracy of pressure updates caused by nonphysical boundary data. After a short review, quantitative control of arising boundary layers in Chorin’s scheme is given under realistic regularity assumptions. Then, we p...

متن کامل

Analysis and convergence of the MAC scheme. II. Navier-Stokes equations

The MAC discretization scheme for the incompressible NavierStokes equations is interpreted as a covolume approximation to the equations. Using some results from earlier papers dealing with covolume error estimates for div-curl equation systems, and under certain conditions on the data and the solutions of the Navier-Stokes equations, we obtain first-order error estimates for both the vorticity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009